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Abstract Earth system models rely on past observations and knowledge to simulate
future climate states. Because of the inherent complexity, a substantial uncertainty
exists in model-based predictions. Evaluation and improvement of model codes are
one of the priorities of climate science research. Automatic differentiation enables
analysis of sensitivities of predicted outcomes to input parameters by calculating
derivatives of modeled functions. The resulting sensitivity knowledge can lead to
improved parameter calibration. We present our experiences in applying OpenAD
to the Fortran-based crop model code in the Community Land Model (CLM). We
identify several issues that need to be addressed in future developments of tangent-
linear and adjoint versions of the CLM.
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1 Introduction

The Community Earth System Model (CESM) [2], developed by NCAR since 1983
and supported by NSF, NASA, and DOE, is a global climate model for simula-
tions of Earth’s climate system. Composed of five fully coupled submodels of at-
mosphere, ocean, land, land-ice, and sea-ice, it provides state-of-the-art simulations
for research of Earth’s past, present, and future climate states on annual to decadal
time scales. The coupled-system approach enables modeling of interactions of phys-
ical, chemical, and biological processes of atmosphere, ocean, and land subsystems
without resorting to flux adjustments.

The CESM has been used in multicentury simulations of various greenhouse
gases and aerosols from 1850 to 2100. It has also been used for various “what-if”
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scenarios of business-as-usual prognoses and prescribed climate policy experiments
for acceptable climate conditions in the future up to year 2100.

The Community Land Model (CLM) is a submodel of CESM for simulations of
energy, water, and chemical compound fluxes within the land biogeophysics, hy-
drology, and biogeochemistry.

Because of the complexities of the global climate state, a significant variability
exists in model-based predictions. Therefore, the primary goal of climate model-
ing is to enable a genuinely predictive capability at variable spatial resolutions and
subcontinental regional levels.

The increasing availability of computing power enables scientists to not only an-
alyze past climate observations but also to synthesize climate state many years into
the future. CESM, for example, is executable not just on leadership-class supercom-
puters but also on notebook machines. In these settings of unconstrained availability
of simulations, one can iteratively run a model in diagnostic mode to tune model
parameters and execute prognostic runs with a higher degree of confidence. Never-
theless, because of the large number of parameters and the attendant combinatorial
explosion of possible calibrations, uncertainty quantification and sensitivity analysis
techniques are needed to estimate the largest variations in model outputs and rank
the most sensitive model inputs.

In the optimization of numerical model designs, automatic differentiation (AD)
[4] provides indispensable tooling by efficiently computing derivatives of model
outputs with respect to inputs. Derivative information allows for estimation of out-
put changes due to changes in some of the inputs, enabling sensitive input classi-
fication. Further, derivatives can be obtained at a fraction of the cost of computing
model outputs, which makes AD significantly more efficient than manual parameter
perturbation and finite difference-based calibration. A wide number of applications
of AD have been reported with many numerical computations in physical, chemical,
biological, and social sciences [1, 10]. To the best of our knowledge, AD is yet to
be applied to the land model climate code. Therefore, we present our initial find-
ings of differentiating the CLM, the commonalities with previous applications, and
differences that are specific to the land model code.

We begin with an overview in Sect. 2 of the CLM model and its crop model
subunit. Section 3 provides a brief overview of OpenAD – a modular AD tool for
transformations of C/C++ and Fortran codes. In Sect. 4, we describe the develop-
ment of a tangent-linear code with OpenAD. In Sect. 5, we present the results of
our experiment in applying OpenAD to the CLM’s crop model, including a discus-
sion of our experiences and lessons learned in the differentiation of climate code.
Section 6 closes with concluding remarks and future work.

2 Background

The CESM provides a pluggable component infrastructure for Earth system simula-
tions. Each of the five components can be configured in active, data, or stub modes,
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allowing for a variety of simulation cases. There is also a choice of a coupler – either
MCT [7] or ESMF [3] – to coordinate the components and pass information between
them. During the execution of a CESM case, the active components integrate for-
ward in time, exchanging information with other active and data components and
interfacing with stub components.

The land component in active mode models the land surface as a nested subgrid
hierarchy, where each grid cell can have a number of different land units, each land
unit can have a number of different columns and each column can have a number
of different plant functional types (PFTs). The first subgrid level – land unit – cap-
tures the broadest land surface patterns such as glacier, lake, wetland, urban, and
vegetated patterns. The second subgrid level – column – has similar surface patterns
to those of the enclosing land unit but captures vertical state variability with mul-
tiple layers of water and energy fluxes. The third level – PFT – captures chemical
differences among broad categories of plants that include grasses, shrubs, and trees.

In order to improve the modeling of carbon and nitrogen cycles, the CLM has
been updated with managed PFTs of corn, wheat, and soybean species. Each PFT
maintains a state captured in terms of carbon and nitrogen (CN) pools located in
leaves, stems, and roots and used for storage or growth. The CN fluxes among PFT
structures determine the dynamics of vegetation. A significant contributing factor
that affects CN fluxes is the ratio of CN within different structures. A large un-
certainty exists regarding the CN ratios, which therefore are the primary targets of
calibration in order to improve the overall model accuracy.

3 Automatic Differentiation and OpenAD

Automatic differentiation [4] is a collection of techniques of evaluating derivatives
of functions defined by computer programs. The foundation of AD is the obser-
vation that any function implemented by a program can be viewed as a sequence
of elementary operations such as arithmetic and trigonometric functions. In other
words, a program P implements the vector-valued function

y = F(x) : Rn 7→ Rm (1)

as a sequence of p differentiable elemental operations

vi = ϕ(. . . ,v j, . . .), i = 1, . . . , p. (2)

The derivatives of elemental operations are composed according to the chain rule in
the differential calculus.

The key concepts in AD are independent variables u ∈ Ra,a ≤ n, and dependent
variables v ∈ Rb,b ≤ m. Any variable within program P that depends on (or is
varied by) values of independent variables and contributes to (or is useful for) values
of dependent variables is known as active. Active variables have value and derivative
components.
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Fig. 1 OpenAD components. Front-ends parse the input source into an IR, which is further trans-
lated into XAIF that represents the numerical core of the input. After the AD of the core, the results
are unparsed back into source text.

Because of the associativity of the chain rule, there exist two modes of AD. In
the forward (or tangent-linear) mode, derivative computation follows the original
program control flow and accumulates derivative values starting from independent
variables to dependent variables. In the reverse (or adjoint) mode, derivative com-
putation follows the reverse of the original control flow and derivatives are accumu-
lated from dependent to independent variables.

Derivative values of active variables can be propagated in at least three ways.
First, source-to-source transformations can be used to derive new program P ′ that
adds new code to the original program code to propagate derivative values. Second,
operator-overloading of elemental operations involving active variables can also be
used to propagate the derivatives. Third, a complex-step method [6] can be used
to view active variables as complex numbers, where the real part stores original
variable values and the imaginary part propagates derivative values.

OpenAD [12] is a source-to-source transformation-based AD tool built from
components (see Fig. 1). Two front-ends are currently supported: Rose [11] for
C/C++ and Open64 [8] for Fortran 90. The intermediate representations (IR) created
by the front-ends are translated by using OpenAnalysis [9] into XML abstract in-
terface format (XAIF) [5], which represents the numerical core of the input source.
This representation is transformed to obtain the derivatives, and the result is un-
parsed back into the front-end’s IR for further unparsing into the original source
language.

4 AD Development Process

The intended process flow for the automatic differentiation of numerical codes is to
limit manual intervention to the identification of independent and dependent vari-
ables and to let an AD tool generate an efficient code that computes valid deriva-
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tives. However, practical implementations of AD are not yet fully autonomous, and
manual development is often necessary to pre- or postprocess the codes or to “stitch”
together differentiated and other/external code. Such interventions are cross-cutting,
requiring a collaborative effort between domain scientists who developed the origi-
nal numerical code and AD developers who have expertise in source code analysis
and transformation.

In order to reduce the need for manual intervention, it is important to identify
patterns and antipatterns of effective programming practices in the development of
numerical codes as a means of making the code that implements the numerical func-
tions more amenable to sensitivity analysis or other analyses requiring derivative
computations. The emerging patterns can then be targeted and automated by either
source code refactoring tools or AD preprocessing tools.

In the current work of model optimization and parameter calibration, our initial
goal was to identify whether AD can be performed at all, and, if not, to identify
obstacles for developing derivative code. To date, we have succeeded in the differ-
entiation of a subunit of the land model code, and we have expended considerable
effort into discovering and resolving the obstacles. In the process, we have gained
some pattern- and process-related insights, which we report below. As we develop
greater expertise in the cross-cutting issues in climate model and intrusive AD anal-
ysis domains, we expect greater efficiency and/or automation of AD development.
Our goal is to develop and validate AD code for the entire CLM.

4.1 Code Comprehension

The initial step in any AD effort is to understand the original code. Typically, well-
maintained codes have documentation in the form of installation guides, user manu-
als, and HTML documentation generated from source code comments. For AD, one
also needs information about source code structures and modules. Dynamic func-
tion/procedure call graphs can provide dependency information.

The CLM code is a well-documented Fortran 90 code with a user guide and
manual that allow for quick installation and execution. However, most of the doc-
umentation is targeted at climate experts, with little information about the source
code or how to modify and extend the model code. Therefore, we were on own in
the comprehension of code dependencies.

The CLM source code consists of ≈70K lines of code in biogeochemistry, bio-
geophysics, hydrology, and coupler modules. Because of the complexity of differ-
entiating all the CLM code, we chose to prototype a derivative of a smaller subunit.
Fortunately, we had access to a climate scientist who had recently extended the bio-
geochemistry module of the CLM with a model of managed crop species of corn,
wheat, and soybeans — CLM-Crop. Therefore, we chose the CLM-Crop unit for
the initial AD prototype.

To understand the dependencies between CLM-Crop and other subunits, we con-
structed a dynamic function call graph. This work entailed porting CESM from PGI
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compilers to the GNU compiler suite, which provides a built-in dynamic function
call profiler gprof. Based on the call graph, the first candidates for AD were the
nodes that had minimal calls to and from other nodes.

4.2 Preprocessing

Having identified the subroutines for AD, we started preparing the source code for
OpenAD transformations. Since the code for differentiation must be visible to the
tool, the recommended development pattern is to identify or create a top-level, or
head, subroutine that invokes all other subroutines subject to AD. The annotations
of independent and dependent variables are inserted into the head subroutine. Then,
the head and all invoked subroutines are concatenated into a single file, which is
transformed by the tool. The advantage of having a head subroutine is that it enables
(1) seeding of derivatives of interest before any call to differentiated code and (2)
extraction of computed derivatives upon completion of all computation of interest.
Both seeding and extraction can be performed in a driver subroutine/program that
invokes the head subroutine.

One of the antipatterns that we encountered in the model code is the heavy use
of preprocessor directives. They are used to statically slice out portions of code that
are not used in a certain model configuration. An example is shown below.

psnsun to cpool (p) = psnsun(p) ∗ laisun (p) ∗ 12.011e−6 r8
psnshade to cpool (p) = psnsha(p) ∗ laisha (p) ∗ 12.011e−6 r8
# if ( defined C13)

c13 psnsun to cpool (p) = c13 psnsun(p) ∗ laisun (p) ∗ 12.011e−6 r8
c13 psnshade to cpool (p) = c13 psnsha(p) ∗ laisha (p) ∗ 12.011e−6 r8

#endif

Here, operations related to C13 are conditioned on whether that preprocessor flag is
set. This kind of programming practice can substantially reduce the amount of code
for differentiation, which in turn can produce a more efficient code. However, if the
goals of differentiation change (e.g., to include new parameters to calibrate) and in-
clude the previously sliced-out code, then the result of the previous AD development
effort is not reusable for the new AD goals.

A pattern for improved reusability, maintainability, and differentiability is to use
control flow branching to evaluate different sections of code instead of relying on
the preprocessor for integrating different semantics. For the example above, the pre-
processor directives can be transformed to the following.

...
if ( is c13 ( pft type (p ))) then

c13 psnsun to cpool (p) = c13 psnsun(p) ∗ laisun (p) ∗ 12.011e−6 r8
c13 psnshade to cpool (p) = c13 psnsha(p) ∗ laisha (p) ∗ 12.011e−6 r8

end if
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Here, the operations are conditioned on whether the type of PFT p is C13. This
version of model code promotes reuse by retaining the source code of a different
model configuration.

4.3 Transformation

After all the source code has been preprocessed and collected into a file, the code
can be passed to OpenAD for transformations. The language-agnostic and modular
design of OpenAD allows for incremental transformations as follows:

• Canonicalize To reduce variability of the input code, it is preprocessed to make
it more amenable for differentiation. For example, Fortran intrinsic functions
min and max accept variable number of arguments and do not have closed form
for partial derivatives. Calls to these functions are replaced with calls to three-
argument library subroutines, which place the result of the first two arguments
into the third.

• Parse (fortran → ir) The input source code is parsed with the front-end module
and converted into its intermediate representation (e.g. Open64’s whirl ).

• Translate (ir → xaif) Differentiation of the numerical core of the input program
is performed in XAIF. This step filters out various language-dependent features
such as replacing de-references of a user-defined type’s element with access to a
scalar element.

• Core transformation (xaif → xaif’) The computational graph of the numerical
core is traversed inserting new elements that compute derivative values.

• Un-translate (xaif’ → ir’) This step adds filtered out features.
• Un-parse (ir’ → fortran’) Here, we obtain output source code.
• Postprocess This step ensures that the output code is valid. For example, variables

that were determined to be active acquire the new library-defined type active, and
all references are updated with value and derivative component accesses %v and
%d.

4.4 Postprocessing

After a differentiated version of the input code has been obtained, the final stage in
the process is to compile and link the output with the rest of the overall code base.

If all the model code is transformed, this step is limited to the invocation of
the model’s regular build routine. However, if only part of the model code is
transformed, then this step requires integration of differentiated (AD) and non-
differentiated (external) code. A large part of the reintegration is to convert all uses
of activated variables in the external code to reference the value component(e.g.,
my var → my var%v). OpenAD automates this conversion by generating a sum-
mary source file that declares all activated variables during the postprocessing stage.
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This file is then used by a library script to convert external code files that reference
active variables to de-reference the active variables’ value component. The conver-
sion is repeatedly invoked on external code files until an executable of the overall
model is built.

In our case, differentiation of the CLM-Crop subunit activated a large number of
global state variables in the CLM. Since many of these variables were accessed by
external code, the postprocessing stage involved a substantial reintegration effort.
Over 60 external source files were modified to properly reference active variable
values.

5 Results

In this section, we report the results of the experiment of differentiating the CLM-
Crop subunit of the CLM code.

Table 1 Independent and dependent variables for AD-based sensitivity analysis

Description Units
Inputs
fleafcn final leaf CN ratio gC/gN
frootcn final root CN ratio gC/gN
fstemcn final stem CN ratio gC/gN
leafcn leaf CN ratio gC/gN
livewdcn live wood CN ratio gC/gN
deadwdcn dead wood CN ratio gC/gN
froot leaf new fine root C per new leaf C gC/gC
stem leaf new stem C per new leaf C gC/gC
croot stem new coarse root C per new stem C gC/gC
flivewd fraction of new wood that is live none
fcur fraction of allocation that goes to current growth none
organcn organ CN ratio gC/gN

Outputs
leafc leaf carbon gC/m2

stemc stem carbon gC/m2

organc organ carbon gC/m2

leafn leaf nitrogen gN/m2

stemn stem nitrogen gN/m2

organn organ nitrogen gN/m2

The inputs and outputs that were chosen for the AD-based sensitivity analysis
are summarized in Table 1. As discussed in Sect. 2, the goal of the analysis was to
identify the most sensitive parameters for further calibration of model accuracy.

Table 2 briefly summarizes the results of the analysis. For each of the three
managed crop types, it reports the derivatives of leaf, stem, and organ carbon and



Applying Automatic Differentiation to the Community Land Model 9

nitrogen with respect to the 12 independent variables. For example, the partial
derivative of corn’s leafc with respect to fleafcn is dlea f c

d f lea f cn = 7.0353917. Similarly,
dlea f n

d f lea f cn = −93.0305059 and so forth for each intersection of rows and columns.
These values represent accumulated derivatives for one year, where the model inte-
grates forward in time with half-hour (1800-second) time steps.

Table 2 Derivatives of leaf, stem, and organ C and N with respect to selected CN ratio parameters

CORN WHEAT SOY
C N C N C N

LEAF
f lea f cn 7.0353917 -93.0305059 5.0544004 -100.2410991 3.2190047 -59.1898603
f rootcn 4.6136744 -46.2578484 -10.0406592 -72.8134870 2.7559661 -22.6071324
f stemcn 1.9315305 0.1931531 2.6791610 0.1786107 0.6794228 0.0271769
deadwdcn 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
STEM
f lea f cn 14.4554170 0.2891083 57.2387074 1.1447741 34.5605004 0.6912100
f rootcn 9.4894822 -12.9865931 -116.1697332 -35.8649400 26.2942184 -20.5785076
f stemcn 3.9686602 -25.9019159 30.3402387 -52.7061099 7.2945506 -12.3742598
deadwdcn 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
ORGAN
f lea f cn 1277.0876953 25.5417539 949.6945091 23.7423627 589.0503999 9.8175067
f rootcn 809.0263835 16.1805277 -1938.7040252 -48.4676006 436.6213665 7.2770228
f stemcn 350.6178413 7.0123568 503.3998741 12.5849969 124.3285795 2.0721430
deadwdcn 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Taking a closer look at the table, we can observe that some derivatives are not as
large as others, indicating that such parameters are not as important as those with
larger derivative values. For example, we can observe that corn parameter fstemcn
does not contribute to the variability of leafc output as much as fleafcn does. Fur-
ther, we see that some derivatives are zero, indicating that such parameters do not
affect the outputs. This information is of clear benefit to model designers because
it identifies the most sensitive parameters for model accuracy calibrations. For ex-
ample, these results indicate that it is best to focus on CN ratios within corn leaves
rather than stems, in order to optimize carbon production within corn leaves, stems,
and organs. Other values can be interpreted similarly.

We have validated the results using finite differences by perturbing some of the
independent variables and calculating the difference between the original and per-
turbed dependent variable values. Table 3 provides an example of perturbing wheat’s
fleafcn parameter by 1.5% and comparing derivative estimates for one time step ob-
tained by OpenAD and by finite differences. We can observe that the derivatives
obtained by the two methods are in agreement with the relative error of 0.0001 or
better.
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Table 3 Comparison of selected derivative estimates

dlea f c
d f lea f cn

dstemc
d f lea f cn

dorganc
d f lea f cn

OpenAD 0.000021273 0.0023837 0.0062778
Finite differences 0.000020848 0.0023359 0.0061479

6 Conclusion

In this paper, we have presented the results of our initial effort in constructing
tangent-linear and adjoint codes for the CLM. We have focused on the CLM-Crop
subunit that models the growth of managed crops. The results of our effort identified
which of the model parameters the outputs of interest are most sensitive to. This in-
formation will be used to improve the subunit and the overall land model code. As
part of the experiment, we have acquired substantial knowledge about the CLM
code. In particular, we have identified the data structures and dependencies in the
code that enable preservation and forward integration of climate state. Among the
lessons learned is the deeply nested structure of the climate state that makes heavy
use of global variables. Activation of a single global variable can lead to numerous
changes in the code base. In this context, the utility of automated updates of refer-
ences to activated global variables — the tooling provided by OpenAD — becomes
indispensable. Future work in applying AD to the CLM includes differentiation of
the overall model and comparison of results obtained using various approaches of
forward- and reverse-mode AD, operator-overloaded AD, and complex-step method
AD.
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